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There is a natural notion of vertical tangent vectors of our bundle: if we work in a
trivialization (xi, aj), then

Vp =

〈(
∂

∂aj

)
p=(x,a)

〉
j=1,··· ,r

= Ker dπ

are naturally “vertical” tangent vectors. We would like a notion of “horizontal” tangent
vectors, i.e. a horizontal subspace Sp ⊂ TpE such that TpE = Vp ⊕ Sp. If (aj) = 0, then
we can naturally identify

TpE 3
(
∂

∂xi

)
p=(x,0)

∼=
(
∂

∂xi

)
π(p)=x

∈ Tπ(p)B

hence then there is a canonical splitting TpE = Vp ⊕ Sp. For (aj) 6= 0 this doesn’t work,
since under a transition function ψβα(x) the former changes with a term a∂ψ

∂x
∂
∂a

. The
conceptual reason is that the ∂

∂x
are tangent to the chosen basis for our sections (cf figure

2 in other PDF).

Analogously to Vp = Ker dπ, we can define Sp as the kernel of a map, i.e. a projection

pr : TpE → Eπ(p), given by ej ⊗ (daj + Ajkdx
k)

which is the thing of real importance anyway. But in accordance with the usual treatment,
let’s say we simply pick a horizontal subspace Sp. Note it’s of dimension n = dim(B).
By linear algebra1 we can say

Sp = ∩ri=1Ker θi where θi ∈ T ∗
pE.

We can write θi = αijda
j + βikdx

k. Moreover, αij is invertible: ∂
∂a

/∈ Sp hence for every
j there is an i such that θi

(
∂
∂aj

)
6= 0, hence αij has no zero eigenvalues. Multiplying θi

with invertible matrices doesn’t change Sp, hence w.l.o.g. θi = dai + Aik(x, a)dxk.

We now assume Aik(x, a) = Aijk(x)aj (it is not necessary, but gives nice and natural
properties). Hence we see our Sp is fixed by this Aijk which can be shown to transform
like a connection ought to. It is the same one appearing above in “pr”. In fact:

pr =
r∑
i=1

ei ⊗ θi : TpE → Eπ(p)

1An n-dimensional subspace of Rn+r is determined by ∩Kerθi where θi are i = 1, · · · , r elements in
(Rn+r)∗.
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and indeed Ker pr = ∩iKer θi.

We can define a covariant derivative

dAs := pr ◦ ds : TbB → Eb

which indeed satisfies the Leibniz rule. In fact: using the axiomatic definition of the
covariant derivative, one can show that they are all of this form.

We say a section s : B → E is parallel or covariant constant if dAs = 0. From the
above definition, we can see this is equivalent to saying ds(TbB) ⊂ Ss(b), i.e.: the tangent
spaces to s are horizontal.

How does this work out in components? On the one hand we know the horizontal vectors
are those generated by

Sp =

〈
∂

∂xj
− Aikjak

∂

∂ai

〉
j=1,··· ,n

since

el ⊗
(
dal + Alska

sdxk
)( ∂

∂xj
− Aikjak

∂

∂ai

)
= 0 .

On the other hand, the tangent space of s(B) at s(b) is

Ts(b)s(B) =

〈
∂

∂xj
+
∂si

∂xj
∂

∂ai

〉
.

But since dAs = 0, we know
∂si

∂xj
= −Aikjsk .

This tells us indeed that
Ts(b)s(B) = Ss(b) .

Similarly (and for this we don’t even need the notion of covariant derivative!), if we have
a path γ : I → B, we can lift it to a path γ̃ : I → E by demanding that the tangent
space of γ̃(I) is flat (at every point). Since now

Tγ̃(t)I =

〈
ẋj

∂

∂xj
+ ȧi

∂

∂ai

〉
if we want TpI ⊂ Sp for all p = γ(t), that is equivalent to demanding

ȧi + Aijka
jẋk = 0

which has a unique solution given an initial element ∈ Eγ(0). This is called the parallel
transport of our vector along γ.

2


